miércoles, 9 de agosto de 2017

LA MÁQUINA DE TURING

Ayer, colgamos, aquí en Matemático Soriano, la película "El Código Enigma" (del inglés "The Immitation Game") que hablaba sobre la historia de Alan Turing y el diseño de una máquina que fuera capaz de quebrar el cifrado de la máquina Enigma de los nazis. Para los que estéis interesados en conocer más sobre esta hazaña, os dejo un vídeo del "Aula 141" (tienen unos vídeos geniales) que explica el funcionamiento de una máquina de Turing.

martes, 8 de agosto de 2017

EL CÓDIGO ENIGMA

Hoy, en Matemático Soriano, os traemos una película basada en la vida del matemático Alan Turing y su determinante papel para intentar ganar la II Guerra Mundial.


lunes, 17 de julio de 2017

EL NÚMERO 7

  • Es un número primo.
  • En binario se escribe utilizando solo unos.
  • Es uno de los divisores del segundo número perfecto.
  • Cada semana tiene 7 días.
  • 7 es el número de colores del arco iris.
  • En el islam existen 7 cielos.
  • 7 son las notas musicales: do, re, mi, fa, sol, la, si.
  • El candelabro judío tiene 7 brazos.
  • Son 7 los pecados capitales: soberbia, avaricia, lujuria, ira, gula, envidia y pereza.
  • La Biblia lo considera el número perfecto, 7 días necesitó Dios para crear el mundo y 7 fueron las plagas de Egipto.
  • Las 7 frases de Jesús antes de morir en la cruz.
  • 7 es la suma de dos caras opuestas de un dado.

Y hoy, 17 del 07 del 2017, tenemos una fecha formada por tres números primos distintos acabados en 7. Algo que no volverá a ocurrir hasta dentro de 10 años.

Disfruten del día.


sábado, 15 de julio de 2017

EL OCTAEDRO TRUNCADO DE DOME IT!

Hace unos meses, como ya sabréis en Matemático Soriano nos presentamos a Becas Europa con un proyecto que pretendía hacer más cómoda la residencia en campos de refugiados (podéis encontrar más información en BECAS EUROPA - DOME IT! y en la página web del proyecto domeit.bloomgogo.com). Nuestro equipo, formado por mí y por otros cinco increíbles estudiantes de 2º de Bachillerato, tenía entre sus objetivos construir un "domo" a partir de placas. Decidimos que la mejor forma que podía tener este era la de un octaedro truncado a la tercera parte cortado algo por encima de la mitad. Una vez tomada la decisión, una herramienta que nos fue de gran utilidad durante la investigación fue GeoGebra, dado que este poliedro no es excesivamente popular no encontramos mucha información, así que, esta nos la proporcionamos nosotros mismos gracias a este programa informático, conseguimos sobre todo datos sobre los ángulos entre las caras (necesarios para unir las placas). 

viernes, 7 de julio de 2017

EL CUADRADO MÁGICO DEL 7

Para acabar por todo lo grande con estos 7 días de cuadrados mágicos. Hoy 07/07/2017 a las 7:17 para nuestro 7º y último cuadrado hemos considerado que lo apropiado era concluir con algo relacionado con este número. Por eso, presentamos un cuadrado mágico de orden 4 (este 4 nos ha fallado) formado exclusivamente por números primos acabados en 7


jueves, 6 de julio de 2017

EL CUADRADO MÁGICO DE LOS NÚMEROS PRIMOS

Hoy vamos con un cuadrado de orden 13 que está formado exclusivamente por números primos. Este fue publicado hace unos años en Journal of Recreational Mathematics y fue elaborado por un aficionado a los puzzles que en ese momento se encontraba en prisión.


Además, es un cuadrado polimágico, es decir, si cogemos los cuadrados centrales de orden 3, 5, 7, 9 y 11 estos también son cuadrados mágicos con sus propias constantes.

miércoles, 5 de julio de 2017

CUADRADO MÁGICO Y GRECOLATINO DE ORDEN 10

¿Qué es un cuadrado grecolatino? Una definición correcta sería: "un cuadrado greolatino de orden n se denomina, en matemáticas, a la disposición en una cuadrícula cuadrada n×n de los elementos de dos conjuntos S y T, ambos con n elementos, cada celda conteniendo un par ordenado (s, t), siendo s elemento de S y t de T, de forma que cada elemento de S y cada elemento de T aparezca exactamente una vez en cada fila y en cada columna y que no haya dos celdas conteniendo el mismo par ordenado.

Intentaremos explicarlo de forma más sencilla con un ejemplo, el conjunto S está compuesto por letras mayúsculas del abecedario latino y el conjunto T por letras del abecedario griego. En cada casilla del cuadrado tenemos una letra mayúscula y otra griega y cada una de estas letras aparece una única vez en cada fila, columna y diagonal. Veamos tres ejemplos de cuadrados de orden 3, 4 y 5:


Para el cuadrado mágico que hemos presentado en el título el elemento de uno de los conjuntos son las decenas (del 0 al 9) y el otro las unidades (del 0 al 9 también).

Cuadrado grecolatino y mágico de orden 10

Recuerda que puedes consultar los otros cuadrados mágicos de esta semana y aprender sobre sus peculiaridades y rarezas.
Esta entrada participa en la Edición 8.5 del Carnaval de Matemáticas cuyo anfitrión es, en esta ocasión, Santi García desde Raíz de 2.

martes, 4 de julio de 2017

EL CUADRADO SEMIMÁGICO DEL SALTO DEL CABALLO

El cuadrado que presentamos hoy (ideado por el genial Euler) se consigue con la técnica del salto del caballo, es decir, pasar con un caballo de ajedrez (y su movimiento) por todas las casillas del tablero sin repetir ninguna. Así, si numeramos las casillas según va pasando la pieza podemos conseguir este cuadrado semimágico. Será semimágico y no mágico porque su constante, 260, solo se cumple para las filas y las columnas y no para las diagonales.


lunes, 3 de julio de 2017

EL CUADRADO "MÁGICO" DE LA SAGRADA FAMILIA

La Sagrada Familia también contiene un cuadrado "mágico", con comillas, porque, para hacer coincidir su constante mágica con la edad de Jesucristo cuando murió, 33, Gaudí utilizó una pequeña artimaña, repitió dos veces el número 14 y el 10. No obstante, eso no le quita al cuadrado del templo barcelonés su misticismo o su belleza.