martes, 26 de septiembre de 2017

ACERTIJO 86 - EL POLÍGONO 172/3

Cada ángulo interior de un polígono mide 172º ó 173º. ¿Cuál es el máximo número de lados del polígono?


La solución algo más abajo.

lunes, 25 de septiembre de 2017

ACERTIJO 85 - LA MIEL ROBADA

Inés descubre que alguien se ha comido su bote de miel y sospecha de sus cuatro vecinos: Alberto, Beatriz, Carmén y Daniel. Alberto dice que fue Beatriz, Beatriz dice que fue Carmén. Daniel y Carmén niegan haber tenido nada que ver con el asunto. ¿Quién se comió la miel, si solo uno de ellos ha dicho la verdad?


La solución como siempre algo más abajo.

domingo, 24 de septiembre de 2017

ACERTIJO 84 - EL ACERTIJO DE LOS LOROS

Hay una fila de 2017 loros, que están hablando, uno detrás de otro. El primero dice: El segundo loro es verde. El segundo dice: El tercer loro es verde, ….. El loro número 2015 dice: El loro 2016 es verde. El loro 2016 dice: El loro 2017 es un hipopótamo azul. El loro 2017 dice: ¡Yo no soy un hipopótamo azul! Se sabe que todos los loros verdes mienten, y que todos los loros que mienten, son verdes. ¿Cuántos loros verdes hay en la fila?


La solución como siempre algo más abajo.

sábado, 23 de septiembre de 2017

FRASE MATEMÁTICA 9 - ALBERT EINSTEIN

Resultado de imagen de frases matematicas

Tomada del blog Matemáticas Perfeccionado

ACERTIJO 83 - LOS NÚMEROS BALANCEADOS

Un entero positivo N está balanceado si N = 1 o si N puede ser escrito como el producto de una cantidad par de factores primos (da igual que se repitan), por ejemplo N = 12 = 2·2·3 no estará balanceado pero N = 90 = 2·3·3·5 sí que lo estaría. Si nos dan dos números a y b distintos y escribimos el número P(x) = (x+a)·(x+b), ¿podremos encontrar dos números a y b tal que P(1), P(2), ..., P(50) sean todos balanceados? ¿Por qué?

La solución como siempre algo más abajo.

viernes, 22 de septiembre de 2017

ACERTIJO 82 - EL CUBO CORTADO

Una de las caras del cubo se corta a lo largo de sus diagonales (ver la figura). ¿Cuáles de los siguientes desarrollos es imposible? 



La solución como siempre algo más abajo.

jueves, 21 de septiembre de 2017

ACERTIJO 81 - KANGOUROU

¿Cuál es el menor número de letras que hay que borrar en la palabra KANGOUROU para que las que queden estén en orden alfabético?


La solución algo más abajo.


martes, 19 de septiembre de 2017

ACERTIJO 79 - ¡A DEMOLER PUENTES!

La figura representa 10 islas y 15 puentes. ¿Cuál es el menor número de puentes que debemos cerrar para que no sea posible ir de A a B a través de puentes?


La solución más abajo.

lunes, 18 de septiembre de 2017

ACERTIJO 78 - EL GRUPO DE WHATSAPP

Los estudiantes de una clase de matemáticas han creado unos grupos de WhatsApp un poco raros que cumplen:
                                                                                       
1) Si hay 2 grupos A y B, entonces hay un grupo A U B (grupo en el que cada persona es al menos del grupo A o del grupo B). 
2) Para cada grupo A existe un grupo (donde están todas las personas que no están en A).

¿Es verdad que si existen los grupos A y B también tenemos un grupo  (donde cada estudiante pertenece a los grupos A y B)?

La solución más abajo.